Dual Solutions for Descale Service
Another Blend of Advanced Technologies for the Water Hydraulics Industry.

Media Piloted Soft Seat Poppet Design
- Ceramic controlled pilot circuit
- Extremely dirt tolerant
- Soft or modified seats for zero leak
- Tough abrasion resistant seals and wearbands
- Nose profile for shock abatement
- Hardened stainless internals
- Size range DIN 50 to DIN 200
- Drop-in to existing flange dimensions
- Standard salt bath nitride for lifetime corrosion resistance
- Pressures to 6000 PSI (420 Bar)

Industry Changing “EMC2” Electro-Mechanical Ceramic Seat Descale Valve
- Servo controlled electro-mechanical actuated poppet
- Develop unique closing profile for each valve
- Absolute “shock elimination”
- Protect pumps and headers/nozzles from hydraulic shock
- Eliminates high maintenance media piloting
- Eliminates hard to maintain dynamic poppet seals
- Exceptionally long life ceramic seats meter closing
- Quick responsive opening and closing
- Standard salt bath nitride for lifetime corrosion resistance
- Sizes DIN 50 to DIN 200
- Drop-in to existing flange dimensions
- Pressures to 6000 PSI

Contact Information:
Fluid Logic Valve Division
1001 Commerce Ct.
Buffalo Grove, IL 60089
www.fluidlogicvalve.com

For sales and technical questions please contact Fluid Logic at:
Email: sales@fluidlogicvalve.com
Tel: 800 386 7822 or 847 459 3231
Fax: 847 459 2208
The use of electromechanical elements (Actuator, Servo Motors and the Servo Controller) are combined with new ceramic technology that Fluid Logic has introduced to the water hydraulic industry. The combination of these two technologies allows us to eliminate the 3 largest issues in descale valve reliability.

1) The elimination of all dynamic seals. Since the poppet will be biased by use of descale water, the need for seals are eliminated and the poppet and sleeve surfaces become ceramic bearing points. The seats being ceramic will not be affected by the high velocity abrasive descale water jetting across their surfaces.

2) The elimination of the pilot valve and pilot circuit is achieved by replacing the actuation with a servo motor controlled electromechanical actuator. The electromechanical actuator is now responsible for moving the poppet. No longer do we need to maintain a two stage pilot section and concern ourselves with filtration and wear issues.

3) Water hammer can be controlled without sacrificing the integrity the poppet seats being exposed to high velocity water while trying to control shift speed of the main poppet.